

- **24.** Try to estimate the coordinates of the highest point and the leftmost point on the curve $x = te^t$, $y = te^{-t}$. Then find the exact coordinates. What are the asymptotes of this curve?
- **25–26** □ Graph the curve in a viewing rectangle that displays all the important aspects of the curve.
 - **25.** $x = t^4 2t^3 2t^2$, $y = t^3 t$
 - **26.** $x = t^4 + 4t^3 8t^2$, $y = 2t^2 t$
 - 27. Show that the curve $x = \cos t$, $y = \sin t \cos t$ has two tangents at (0, 0) and find their equations. Sketch the curve.
 - **28.** At what point does the curve $x = 1 2\cos^2 t$, $y = (\tan t)(1 2\cos^2 t)$ cross itself? Find the equations of both tangents at that point.
 - 29. (a) Find the slope of the tangent line to the trochoid

- **37.** Find the area under one arch of the trochoid of Exercise 34 in Section 10.1 for the case d < r.
- **38.** Let \Re be the region enclosed by the loop of the curve in Example 2.
 - (a) Find the area of \Re .
 - (b) If \Re is rotated about the *x*-axis, find the volume of the resulting solid.
 - (c) Find the centroid of \Re .
- **39.** Estimate the area of the region enclosed by each loop of the curve

$$x = \sin t - 2\cos t$$
 $y = 1 + \sin t \cos t$

40. If f' is continuous and $f'(t) \neq 0$ for $a \leq t \leq b$, show that the parametric curve x = f(t), y = g(t), $a \leq t \leq b$, can be put in the form y = F(x). [*Hint:* Show that f^{-1} exists.]